

- 13. Find the values of a, b, c so that the vector $\vec{F} = (x + 2y + az)\vec{i} + (bx 3y z)\vec{j} + (4x + cy + 2z)\vec{k}$ is irrotational.
- 14. Evaluate $\vec{F} = (xy)\vec{i} + (x^2 + y^2)\vec{j}$, find $\int \vec{F} \cdot d\vec{r}$, where c is the area of the parabola $y = x^2 4$ from A (2, 0) to B (4, 12) in the xy plane.

15. Solve $\frac{dy}{dx} = \frac{x+2y-3}{2x+y-3}.$

- 16. Determine the maximum and minimum of a function $f(x, y, z) = xy + 10x x^2 y^2 z^2$.
- 17. Using Newton's iterative method, find the root between 0 and 1 of $x^3 = 6x 4$ correct to two decimal places.
- 18. Evaluate $\int_{0}^{1} \frac{dx}{1+x^2}$, using trapezoidal rule with h=0.2, Hence determine the value of π .

ANSWER ANY TWO QUESTIONS.

SECTION C

$(2 \times 20 = 40)$

- 19. a) The quantity sold and the corresponding price, under monopoly are determined by the demand function $y = 16 x^2$ and the marginal cost function y' = 6 + x in such a way as to maximize the profit. Determine the corresponding consumer surplus.
- b) Find the area bounded by the curve y=x² and y=x. (10+10)
 20. If F = (2x² 3z)i + (2xy)j + (4x)k, then evaluate i) ∭ (∇×F)dv and ii) ∭ (∇•F)dv where V is the region bounded by x = 0, y = 0, z = 0 and 2x + 2y + z = 4.
 21. a) A particle moves in a straight line with velocity given by ds/dt = s + 1, where s is the distance from the starting point measured in feet and the unit time taken by the particle to travel at distance of 33 yards.
 b) Maximize Z=4x₁+10x₂, 2x₁+x₂ ≤ 50; 2x₁+5x₂ ≤ 100; 2x₁+3x₂ ≤ 90; x₁, x₂ ≥ 0 using simplex method. (5+15)
- 22. a) Write down the Newton's Raphson formulae to find the square root of positive number K and hence find $\sqrt{5}$.
 - b) By dividing the range in to ten equal parts evaluate $\int_{0}^{0} \sin x dx$ by using Simpson's 1/3 and Simpson's 3/8 rule. (10+10)
